A Novel Preisach Based Neural Network Approach to Hysteresis Non-Linearity Modeling

نویسندگان

  • Mohsen Firouzi
  • Mohammad Ghomi Rostami
  • Saeed Bagheri Shouraki
  • Melika Iloukhani
چکیده

In some systems with hysteresis behavior like Shape Memory Alloy (SMA) actuators and Piezo actuators, we essentially need an accurate modeling of hysteresis either for controller design or performance evaluation. One of the most interesting Hysteresis non-linearity identification methods is Preisach model in which hysteresis is modeled by linear combination of elemental operators. Despite good ability of Preisach modeling to extract main features of system with hysteresis behavior, cause of tough numerical nature of Preisach, it is not convenient to use in real-time control applications. In this paper we present a novel method based on Artificial Neural Network. For evaluation of proposed approach we use experimental apparatus consists of onedimensional flexible aluminum structure with SMA wire as deflection controller actuator which has hysteresis characteristic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hysteresis Nonlinearity Identification Using New Preisach Model-Based Artificial Neural Network Approach

Preisach model is a well-known hysteresis identification method in which the hysteresis is modeled by linear combination of hysteresis operators. Although Preisach model describes the main features of system with hysteresis behavior, due to its rigorous numerical nature, it is not convenient to use in real-time control applications. Here a novel neural network approach based on the Preisach mod...

متن کامل

Modeling of Piezoelectric Actuators Based on Bayesian Regularization Back Propagation Neural Network

Problem statement: Piezoelectric actuator is a kind of key driving components for micropositioning stages, micropumps, micro valves, micro gripper and so on in the fields of micro/nano technology such as integrated circuit manufacturing, precision instruments, ultra precision fabrication, biomedical manipulation. It has lots of advantages including high stiffness, fast response times, less heat...

متن کامل

Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network

Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...

متن کامل

Modeling Rate-Dependent and Thermal-Drift Hysteresis through Preisach Model and Neural Network Optimization Approach

Smart material actuators like Piezoelectric(PZT) are widely used in Micro/Nano manipulators, but their hysteresis behaviors are complex and difficult to model. Most hysteresis models are based on elementary quasistatic operators and are not suitable for modeling ratedependent or thermal-drift behaviors of the actuators. This work proposes a Preisach model based neurodynamic optimization model t...

متن کامل

Efficient modeling of vector hysteresis using a novel Hopfield neural network implementation of Stoner–Wohlfarth-like operators

Incorporation of hysteresis models in electromagnetic analysis approaches is indispensable to accurate field computation in complex magnetic media. Throughout those computations, vector nature and computational efficiency of such models become especially crucial when sophisticated geometries requiring massive sub-region discretization are involved. Recently, an efficient vector Preisach-type hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010